Source code for pybdl.access.years
"""Access layer for years API endpoints."""
from typing import Any
import pandas as pd
from pybdl.access.base import BaseAccess
[docs]
class YearsAccess(BaseAccess):
"""Access layer for years API, converting responses to DataFrames."""
[docs]
def list_years(
self,
page_size: int | None = None,
max_pages: int | None = None,
**kwargs: Any,
) -> pd.DataFrame:
"""
List all available years as a DataFrame.
Args:
page_size: Number of results per page (defaults to config.page_size or 100).
max_pages: Maximum number of pages to fetch (None for all pages).
**kwargs: Additional parameters passed to API layer (e.g., sort, lang, format, extra_query).
Returns:
DataFrame with available years.
"""
if page_size is None:
page_size = self._get_default_page_size()
data = self.api_client.list_years(page_size=page_size, max_pages=max_pages, **kwargs)
return self._to_dataframe(data)
[docs]
def get_year(
self,
year_id: int,
**kwargs: Any,
) -> pd.DataFrame:
"""
Retrieve metadata for a specific year as a DataFrame.
Args:
year_id: Year identifier (integer, e.g. 2020).
**kwargs: Additional parameters passed to API layer (e.g., lang, format, extra_query).
Returns:
DataFrame with year metadata.
"""
data = self.api_client.get_year(year_id, **kwargs)
return self._to_dataframe(data)
[docs]
async def alist_years(
self,
page_size: int | None = None,
max_pages: int | None = None,
**kwargs: Any,
) -> pd.DataFrame:
"""
Asynchronously list all available years as a DataFrame.
Args:
page_size: Number of results per page (defaults to config.page_size or 100).
max_pages: Maximum number of pages to fetch (None for all pages).
**kwargs: Additional parameters passed to API layer (e.g., sort, lang, format, extra_query).
Returns:
DataFrame with available years.
"""
if page_size is None:
page_size = self._get_default_page_size()
data = await self.api_client.alist_years(page_size=page_size, max_pages=max_pages, **kwargs)
return self._to_dataframe(data)
[docs]
async def aget_year(
self,
year_id: int,
**kwargs: Any,
) -> pd.DataFrame:
"""
Asynchronously retrieve metadata for a specific year as a DataFrame.
Args:
year_id: Year identifier (integer, e.g. 2020).
**kwargs: Additional parameters passed to API layer (e.g., lang, format, extra_query).
Returns:
DataFrame with year metadata.
"""
data = await self.api_client.aget_year(year_id, **kwargs)
return self._to_dataframe(data)