Source code for pybdl.access.years

"""Access layer for years API endpoints."""

from typing import Any

import pandas as pd

from pybdl.access.base import BaseAccess


[docs] class YearsAccess(BaseAccess): """Access layer for years API, converting responses to DataFrames."""
[docs] def list_years( self, page_size: int | None = None, max_pages: int | None = None, **kwargs: Any, ) -> pd.DataFrame: """ List all available years as a DataFrame. Args: page_size: Number of results per page (defaults to config.page_size or 100). max_pages: Maximum number of pages to fetch (None for all pages). **kwargs: Additional parameters passed to API layer (e.g., sort, lang, format, extra_query). Returns: DataFrame with available years. """ if page_size is None: page_size = self._get_default_page_size() data = self.api_client.list_years(page_size=page_size, max_pages=max_pages, **kwargs) return self._to_dataframe(data)
[docs] def get_year( self, year_id: int, **kwargs: Any, ) -> pd.DataFrame: """ Retrieve metadata for a specific year as a DataFrame. Args: year_id: Year identifier (integer, e.g. 2020). **kwargs: Additional parameters passed to API layer (e.g., lang, format, extra_query). Returns: DataFrame with year metadata. """ data = self.api_client.get_year(year_id, **kwargs) return self._to_dataframe(data)
[docs] async def alist_years( self, page_size: int | None = None, max_pages: int | None = None, **kwargs: Any, ) -> pd.DataFrame: """ Asynchronously list all available years as a DataFrame. Args: page_size: Number of results per page (defaults to config.page_size or 100). max_pages: Maximum number of pages to fetch (None for all pages). **kwargs: Additional parameters passed to API layer (e.g., sort, lang, format, extra_query). Returns: DataFrame with available years. """ if page_size is None: page_size = self._get_default_page_size() data = await self.api_client.alist_years(page_size=page_size, max_pages=max_pages, **kwargs) return self._to_dataframe(data)
[docs] async def aget_year( self, year_id: int, **kwargs: Any, ) -> pd.DataFrame: """ Asynchronously retrieve metadata for a specific year as a DataFrame. Args: year_id: Year identifier (integer, e.g. 2020). **kwargs: Additional parameters passed to API layer (e.g., lang, format, extra_query). Returns: DataFrame with year metadata. """ data = await self.api_client.aget_year(year_id, **kwargs) return self._to_dataframe(data)